Diagonal Slides and Diagonal Rotations in Quadrangulations on the Sphere

نویسندگان

  • Atsuhiro NAKAMOTO
  • Yusuke SUZUKI
چکیده

We shall show that any two quadrangulations on the sphere with n vertices can be transformed into each other by at most 6n− 32 diagonal slides and rotations, up to homeomorphism, if n ≥ 9.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducible Quadrangulations of the Klein Bottle

In this paper, we shall determine the complete list of irreducible quadrangulations of the Klein bottle. By this result, we can easily list all the minorminimal 2-representative graphs on the Klein bottle. Moreover, we shall show that any two bipartite quadrangulations of the Klein bottle with at least 10 vertices are transformed into each other by a sequence of diagonal slides and a sequence o...

متن کامل

Diagonal Transformations and Cycle Parities of Quadrangulations on Surfaces

A quadrangulation G on a closed surface F 2 is a simple graph embedded in F 2 so that each face of G is quadrilateral. The diagonal slide and the diagonal rotation were defined in [1] as two transformations of quadrangulations. See Fig. 1. We also call the both transformations diagonal transformations in total. If the graph obtained by a diagonal slide is not a simple graph, then we do not appl...

متن کامل

Quadrangulations and 2-colorations

Any metric quadrangulation (made by segments of straight line) of a point set in the plane determines a 2-coloration of the set, such that edges of the quadrangulation can only join points with different colors. In this work we focus in 2-colorations and study whether they admit a quadrangulation or not, and whether, given two quadrangulations of the same 2-coloration, it is possible to carry o...

متن کامل

Diagonal transformations in pentangulations on the sphere

An N -angulation is a finite simple plane graph such that each face is bounded by a cycle of length N , where N ≥ 3 is an integer. We consider diagonal transformations in N -angulations which consist of ⌊ 2 ⌋ kinds of operations. In the literature, Wagner proved that any two 3angulations (which are often called triangulations) with the same number of vertices can be transformed into each other ...

متن کامل

Asymptotically optimal circuits for arbitrary n-qubit diagonal comutations

A unitary operator U = ∑ j,k u j,k|k〉〈 j| is called diagonal when u j,k = 0 unless j = k. The definition extends to quantum computations, where j and k vary over the 2n binary expressions for integers 0,1 · · · ,2n−1, given n qubits. Such operators do not affect outcomes of the projective measurement {〈 j| ; 0 ≤ j ≤ 2n − 1} but rather create arbitrary relative phases among the computational bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014